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Abstract. The proton bifurcation forT > 120 K in the HN4IO3 · 2HIO3 crystal is considered
as the origin of a phonon mixture. As a result, a supplementary term describing phonon
fluctuations appears in the crystal Hamiltonian. This fluctuation correction forms the basis of a
light absorption mechanism for mixed vibrational modes. An anomalous temperature behaviour
of two modes that was previously found experimentally is explained in the framework of the
present model.

1. Introduction

At the temperatureT0 = 213 K, the NH4IO3 · 2HIO3 crystal (AIH, that is ammonium
triiodate hydrogen) undergoes a phase transition to a superionic state with a high protonic
conductivity [1, 2]. However, the crystal manifests peculiarities even at lower temperature:
the disorder of the proton subsystem precedes the superionic transition [3]; atTc = 120 K a
proton in an elementary cell becomes fuzzy between equilibrium positions of two possible
H bonds (forT < Tc each proton in the crystal is localized in only one of these two H
bonds). The mechanism of the proton motion forT > Tc is polaronic [4] and two vibrational
modes are responsible for this motion: a polarized optical lattice mode (99 cm−1 mode) for
Tc < T < T0 and an intracellular mode (756 cm−1 mode) forT > T0. These two modes are
characterized by anomalous temperature behaviours: according to the IR spectrum, the first
mode decreases markedly, and according to the Raman spectrum, the second one increases
very markedly when the temperature changes fromTc to T0 [4, 5].

The aim of the present paper is to explain the temperature behaviour of the above-
mentioned lattice and intracellular modes. The proton bifurcation forT > Tc is considered
as the origin of phonon fluctuations in the AIH crystal. These fluctuations create a mixture
of the lattice mode with the intracellular one. As a result, a new supplementary term appears
in the crystal Hamiltonian. This fluctuation correction forms the basis of an anomalous light
absorption mechanism for two particular modes.

2. Crystal polarization

In a polar crystal the operator of the field polarization has the form [6]

P̂ (n) = 1

V
∑
q,j

√
h̄

2γj (q)�j (q)

q

|q| eiq·n(b̂jq + b̂
†
j−q) (1)
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whereV is the volume of a unit cell;b̂†
jq (b̂jq) is the Bose operator of creation (annihilation)

of a phonon of thejth mode with the wave vectorq and the cycle frequency�j(q); n is
the radius vector of a cell; and the polarization function is

γj (q) = 4π

�2
j (q)

(
1

ε∞
− 1

ε0

)−1

.

The operator of the interaction between the electromagnetic fieldE(t) = E0e−iωt+ηt and
the polar crystal has the form

Ĥint = P̂ · E(t) =
∑
q,j

dj (q) · E0eiq·n−iωt+ηt (b̂jq − b̂
†
jq) (2)

where

dj (q) =
√

h̄�j (q)

8π(1/ε∞ − 1/ε0)V
q

|q| . (3)

The polarization of the crystal in the fieldE(t) is defined as

〈P (n, t)〉 = Tr{ρ̂intP̂ (n, t)} (4)

where the addition to the statistical operatorρ̂0 is equal to

ρ̂int = ρ̂0 + 1

i h̄

∫ t

−∞
[Ĥint(τ ), ρ̂0] dτ (5)

ρ̂0 = e−Ĥ0/kBT /Tr e−Ĥ0/kBT . (6)

Prior to the first phase transition(T < Tc), the Hamiltonian operator was

Ĥ0 =
∑
j,q

h̄�j (q)

(
b̂

†
jq b̂jq + 1

2

)
. (7)

The crystal polarization〈P 〉 can be found using formula (4). After performing simple
transformations and integration overτ , we obtain (for the Fourier component of polarization)

Pr(q, ω) = −1 + εrr ′(q, ω)

4π
E0r ′ (8)

where (only two modes are taken into account)

εrr ′(q, ω) = ε
(0)
rr ′ +

2∑
j=1

djr(q)djr′(q)

×
[

2ω(ω2 − �2
j (q))

(ω2 − �2
j (q))2 + 4ω2η2

+ iη
4ω2

(ω2 − �2
j (q))2 + 4ω2η2

]
. (9)

Hereεrr ′(q, ω) is the permittivity of a polar crystal.
Upon the first phase transition(T > Tc), when a proton in a unit cell is bifurcated, the

proton deforms the lattice and interacts with crystal vibrations. The interaction leads to the
rearrangement of the phonon spectrum. Corresponding transformations of the�j(q)-values
can be obtained in the framework of the small-polaron model. For the AIH crystal, the
�1,2(q) change only by a few cm−1 when the temperature passes the pointT = Tc on the
temperature scale [4, 5] and further on, forT > Tc, they remain constant(�1 = 99 cm−1

and �2 = 756 cm−1). However, according to the experiment [4, 5], in the AIH crystal
these two modes which provide the proton polaron motion have anomalous temperature
behaviour, unlike all the other modes of the crystal. Consequently, in this case the proton
should influence the intensity of atomic vibrations of the crystal.
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3. The influence of fluctuations onε(q, ω)

The first phase transition leads to very interesting changes in the AIH lattice. ForT > Tc,
protons are bifurcated, i.e. each proton does not have a strictly fixed position but migrates
ceaselessly between two H bonds. Protons in a polar crystal are strongly connected with the
most polarizable longitudinal optic mode—that is, the 99 cm−1 mode in the AIH crystal.
Hence, it is reasonable to assume that it is just by means of this mode that the proton
bifurcation is activated most of all.

With two possible positions of the proton the neighbouring sites move in different
potential wells. However, the frequency of proton jumps is very large, of the order of
1013–1014 s−1. Therefore the sites have not managed to occupy new equilibrium positions.
So, the stationary state of the lattice is not fixed, but fluctuates uninterruptedly. A similar
statement is true for IO3 pyramids in the cell, whose collective behaviour is described by the
756 cm−1 mode. Thus, the proton bifurcation can be considered as a distinctive fluctuation
source that induces an additional displacementδul of the cellular sites. The intensityI1

of the source is directly connected with the lattice mode, 99 cm−1; i.e. the real fluctuation
displacement of thelth site should be described by the termδul(I1). This term can be
presented in the formδul = u2lgl(I1) where gl(I1) is a function of the intensity of the
phonon field of the 99 cm−1 mode. Let us introduce the Hamiltonian function for a model
cubic lattice:

1H = K + U. (10)

Here the kinetic and potential energies are respectively

K = m

2

∑
l

δu̇2
l U = γ

2

∑
l

(δul − δul−a)2. (11)

In (11) m is the mass of the IO3 pyramid;γ is the effective elasticity constant of the model
lattice; anda is the lattice vector. The transition to new collective variationsAq which
characterize a collective fluctuation motion of the IO3 pyramids could be made by means
of the canonical transformation (see, e.g., [7])

δul = 1√
N

∑
q

Aq exp(il · q) (12)

where Aq = A∗
q and N is the quantity of the IO3 pyramids in the lattice. In the new

representation the kinetic and potential energies take the form

K = m

2

∑
q

ȦqȦ−q U = m

2

∑
q

1�2(q) AqA−q (13)

where

1�2(q) = 4
γ

m
sin2(a · q/2). (14)

Further we can write the Lagrange function asL = K − U and find the generalized
momentumPq = ∂L/∂Ȧq = mȦ−q. The classical energy (10) as a function of the
generalized variablesAq andPq has the form

1H = 1

2

∑
q

[
1

m
PqP−q + m 1�2(q) AqA−q

]
. (15)

A change of variables fromAq andPq to operatorsÂq and P̂q transforms the energy (15)
to the energy operator1H.
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In the usual case, the permutation relations

[Âq, P̂q′ ] = iδqq′ [Âq, Âq′ ] = [P̂q, P̂q′ ] = 0 (16)

hold. However, in our case the displacementδuq is a compound value:δul = u2lgl(I1).
Therefore the collective variablesAq should have the same structure; this can be presented
as follows:

Aq = A2qe(α/2)N1q (17)

whereA2q is the generalized collective variable of the motion of IO3 pyramids,N1q is the
quantity of phonons with the wave vectorq of the 99 cm−1 mode andα is the coefficient
which characterizes the degree of influence of this lattice mode on the intracellular mode,
99 cm−1, i.e. α is the constant of coupling between the two kinds of phonon. Note that
the function of the fluctuation intensitygq(I1) written in theq-representation (see (17)) is
obviously in complete agreement with the expression forI of a normal phonon mode. The
expression forI is determined by thermodynamic averaging:

I =
∏
q

e〈b̂†
q b̂q〉

(see, e.g., [8]). By this means, in our case the transition from variablesAq andPq to the
corresponding operators may be performed in the following manner:

Aq → Â2qe(α/2)N̂1q

Pq → m(Â2,−qe(α/2)N̂1q ). = P̂2qe(α/2)N̂1q + α

2
mÂ2,−qe(α/2)N̂1q ˙̂

N1q.
(18)

Here one takes into account that the generalized variableP2q corresponds tomȦ2,−q; N̂1q

is the operator of the phonon quantity for the 99 cm−1 mode. Using relations (16) which
should be valid for the operatorŝA2q and P̂2q we obtain the permutation relations for
compound operators (18):

[Âq, P̂] = i h̄δqq′eαN̂1q [Âq, Âq′ ] = [P̂q, P̂q′ ] = 0 (19)

(here one setṡ̂N = i h̄[N̂, Ĥ0] = 0). Then one can pass from these operatorsÂq and
P̂q to the usual Bose operators for phononsb̂

†
jq and b̂jq (j = 1, 2) which satisfy standard

permutation relations:

[b̂†
jq, b̂j ′q′ ] = δjj ′δqq′ [b̂jq, b̂j ′q′ ] = 0. (20)

The transition can be made via the following rules:

Âq =
√

h̄

2m 1�(q)
(b̂2q + b̂

†
2,−q)e

(α/2)b̂
†
1q b̂1q

P̂q = i

√
mh̄ 1�(q)

2
(b̂

†
2q − b̂2,−q)e

(α/2)b̂
†
1q b̂q .

(21)

Substitution of the variablesAq andPq in the right-hand side of (15) for the operatorŝAq

and P̂q from (21) converts (10) into the fluctuation Hamiltonian

1Ĥ =
∑

q

h̄ 1�(q)

[
b̂

†
2q b̂2qeαb̂

†
1q b̂1q + 1

2

]
. (22)

Thus, the total Hamiltonian of the AIH crystal can be expressed as

Ĥ = Ĥ0 + 1Ĥ (23)

where the operatorŝH0 and1Ĥ are defined in (7) and (22) respectively.
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3.1. Lattice mode absorption

Let us consider the electromagnetic field absorption by the lattice mode when the mode is
perturbed by fluctuations. We suppose that the operator1Ĥ in (22) is a small perturbation,
i.e. the fluctuation energy is smaller than the energy of regular vibrations. The absorption
of the lattice mode has been derived from formulae (4) and (5) where the polarization
operatorP and the operator of the interaction̂Hint(τ ) are defined in the formulae (1) and
(2) respectively, but the operatorρ̂0 should be transformed into

̂̃ρ(Ĥ0 + 1Ĥ) ' ρ̂0(Ĥ0) − ρ̂(Ĥ0)

∫ 1/kBT

0
eλĤ01Ĥ e−λĤ0 dλ. (24)

Without going into technical detail of the calculations, we shall only note that the
calculations of polarization and permittivity are reduced to finding and thermodynamically
averaging the second term in (24):∑

q

f1(q, T ) = −
〈∫ 1/kBT

0
eλĤ01Ĥ e−λĤ0 dλ

〉

f1(q, T ) = −h̄ 1�(q)

∫ 1/kBT

0
dλ Tr

{
ρ̂0 exp

(
λ

2∑
j=1

h̄�j (q)b̂
†
jq b̂jq

)

× b̂
†
2q b̂2q exp(αb̂

†
1q b̂1q) exp

(
−λ

2∑
j=1

h̄�j (q)b̂
†
jq b̂jq

)}

= − h̄ 1�(q)

kBT [exp(h̄�2(q)/kBT ) − 1]
exp

(
α coth

h̄�1(q)

2kBT

)
.

(25)

So, the component of the dielectric function which represents the lattice mode (the term
with j = 1 in (9)) should be supplemented with the factor 1+ f1(q, T ).

3.2. Intracellular mode absorption

The Hamiltonian of the interaction between the electromagnetic wave and the fluctuations
of the intracellular mode in the crystal apparently has a form analogous to (2):

Ĥ
(fl)

int (t) = −
∑

q

d(fl)(q) · E0(V̂
†
q − Vq)e

iωt+ηt . (26)

Here V̂ †
q (V̂q) is the effective operator for the creation (annihilation) of fluctuations of the

intracellular mode:

V̂q = b̂2qeαb̂1q b̂
†
1q . (27)

The operator of the fluctuation dipole moment (compare with [6]) is

P̂fl(n, t) =
∑

q

d(fl)(q)eiq·n(V̂ †
q + V̂q). (28)

In (26) and (28)d(fl)(q) is the effective dipole moment of the fluctuations of the intracellular
mode.

The polarization is defined as〈
P̂fl(n, t)

〉
= Tr{ρ̂flP̂fl(n, t)} (29)

where the statistical operator

̂̃ρfl = ̂̃ρ0 + 1

i h̄

∫ t

−∞
[Ĥ (fl)

int (τ ),̂̃ρ0] dτ. (30)
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Herễρ0 is given in (24). Furthermore we will discard secondary effects of an expansion of̂̃ρ0(Ĥ) in terms of1Ĥ. Hence we assume that in (30)̂̃ρ0 ' ρ̂0. Then for the polarization
of the intracellular mode we have

〈Pfl(n, t)〉 =
∑
qq′

d(fl)(q)(d(fl)(q′) · E0)

∫ τ

∞
dτ ei(ω−iη)τ

×{ρ̂0[(V̂ †
q + V̂q), (V̂

†
q′(τ ) − V̂q′(τ ))]}

=
∑
qq′

d(fl)(q)(d(fl)(q′) · E0) exp[α(2n1q + 1)]

×
∫ t

−∞
dτ {exp[i(ω − �2(q) − iη)τ ] + exp[i(ω + �2(q) − iη)τ ]} (31)

wheren1q is the Planck function of lattice phonons. Upon calculation one finds that the
dielectric function of the intracellular mode fluctuation obtained from (31) differs of the
second term in (9) only by the factor

f2(q, T ) = d
(fl)

2j (q)d
(fl)

2j ′ (q)

d2j (q)d2j ′(q)
exp

(
α coth

h̄�1

2kBT

)
. (32)

So, the component of dielectric function which represents the intracellular mode (the term
with j = 2 in (9)) should be supplemented by the factor 1+ f2(q, T ).

The overall result for the imaginary part of the permittivity is

Im ε(q, ω, T ) = 4ω2η

(ω2 − �1(q)2)2 + 4ω2η2

×[1 + f1(q, T )]
4ω2η

(ω2 − �2(q)2)2 + 4ω2η2
[1 + f2(q, T )] (33)

where the functionsf1 and f2 are defined in (25) and (32) respectively. We will analyse
the expression (33) in the next section.

4. Discussion

The absorption of the 99 cm−1 and 756 cm−1 modes of the AIH crystal was investigated
by Tarnavskiet al [4, 5] from 80 to 300 K. They found that in the temperature interval
between two phase transitions (fromTc = 120 K to T0 = 213 K) the relative intensities
of the absorption maximum (for the 99 cm−1 mode) and the scattering maximum (for the
756 cm−1 mode) have changed very markedly. The former decreases by approximately a
factor of two at 213 K. The latter increases by approximately a factor of five at 213 K.
Since the imaginary part of the permittivity defines the absorption (scattering) maximum,
the expression obtained, equation (33), has to describe the real temperature behaviour of
the two above-mentioned anomalous modes.

To carry out the qualitative analysis, let us write the function (32) in the form

Im ε1 ∝
{

1 − σ1
h̄�2

kBT

[
exp

(
h̄�2

kBT

)
− 1

]−1

exp

(
α coth

h̄�1

2kBT

)}
(34)

for the lattice 99 cm−1 mode and

Im ε2 ∝
{

1 + σ2 exp

(
h̄�1

2kBT

)}
(35)
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for the intracellular 756 cm−1 mode. There are three dimensionless parameters in relations
(34) and (35): α is the constant of the phonon–phonon coupling;σ1 = 1�/�2 is the
parameter which characterizes the fluctuation energy (see (25)) andσ2 = d

(fl)

2j d
(fl)

2j ′ /d2j d2j ′ is
the relative change of the square of the dipole moment transition for the cellular mode.

Figure 1. Im ε1(2) versusT for the two modes. The curves 1 and 2 are built up according to
fomulae (34) and (35) respectively.TN = 213 K is the normalized point.

The behaviour of Imε1(2) as a function ofT is shown in the figure 1. The curves are
built up at the following magnitudes of parameters:α = 0.95, σ1 = 2.56 × 10−4, and
σ2 = 7.77× 10−4. These two curves are quite consistent with the experimental data [4] on
the intensity of the absorption of the 756 cm−1 mode: Imε1 decreases by a factor of two
and Imε2 decreases by a factor of five when the temperture changes from 120 to 213 K.

Consequently, we can assert that the AIH crystal is characterized not only by a
considerable phonon–phonon interaction, which leads merely to phonon anharmonicity. In
this crystal the phonon–phonon coupling between the active lattice mode and the intracellular
one is realized due to the proton bifurcation. The coupling allows us to introduce an
additional term describing vibrational fluctuations into the basis Hamiltonian, formula (23).
The anomalous temperature behaviour of the AIH crystal forT > Tc is connected with those
fluctuations. The availability of moderate phonon–phonon coupling (α = 0.95) permits the
intracellular mode, 756 cm−1, to ‘live’ on the energy of phonons of the lattice mode,
99 cm−1. Indeed, the average energȳE of a vibration with the cycle frequencỹω equals
h̄ω̃[exp(h̄ω̃/kBT ) − 1]−1. Then, for the system under consideration one finds thatĒ2 is
several times smaller than̄E1. Hence, the lattice mode is more powerful than the intracellular
one and, therefore, the latter has taken energy out of the former through the phonon–phonon
coupling. So, at the second phase transition, i.e. at 213 K, the power of the lattice mode
can no longer hold proton polarons very strongly and they become more mobile. Thus, the
crystal goes into a superionic state in which the band polaron conductivity prevails [5].



3544 V Krasnoholovets

References

[1] Baranov A I, Dobrzhanski G F, Ilyukhin V V, Kalinin V I, Ryabkin V S and Shuvalov L A 1979
Kristallografiya 24 280 (in Russian)

[2] Baranov A I, Dobrzhanski G F, Ilyukhin V V, Ryabkin V S, Sokolov Yu N, Sorokina N I and Shuvalov L A
1981Kristallografiya 26 1259 (in Russian)

[3] Puchkivs’ka H O and Tarnavski Yu A 1992J. Mol. Cryst.267 169
[4] Tarnavski Yu A 1993ThesisInstitute of Physics, Ukrainian Academy of Sciences, Kyı̈v, ch 3 (in Ukrainian)
[5] Krasnoholovets V V, Puchkivs’ka H O and Tarnavski Yu A 1993Khim. Fiz.12 973 (in Russian)
[6] Haken H 1980Quantum Field Theory of SolidsRussian translation (Moscow: Nauka) p 223
[7] Davydov A S 1976Theory of Solids(Moscow: Nauka) p 34 (in Russian)
[8] Firsov Yu A (ed) 1975Polarons(Moscow: Nauka) p 368 (in Russian)


